Calculus Applets

Prev Home Next

Lagrange Remainder

When using a Taylor polynomial of degree n centered at c to approximate the value of a function f at x, there is an error because the polynomial does not exactly mimic the function (unless, of course, f is a polynomial of degree less than or equal to n). We can bound this error using the Lagrange remainder (or Lagrange error bound). The remainder is: lagrange remainder where M is the maximum of the absolute value of the (n + 1)th derivative of f on the interval from x to c. The error is bounded by this remainder (i.e., the absolute value of the error is less than or equal to R). Note that R depends on how far x is away from c, how big n is, and on the characteristics of f.

Try the following:

  1. The applet shows the Taylor polynomial with n = 3, c = 0 and x = 1 for f (x) = ex. To compute the Lagrange remainder we need to know the maximum of the absolute value of the 4th derivative of f on the interval from 0 to 1. Since the 4th derivative of ex is just ex, and this is a monotonically increasing function, the maximum value occurs at x = 1 and is just e. So remainder. Note in the applet that the actual error is about 0.052. The Lagrange remainder is a bound on the error, not the actual error itself. It just says that the error, whatever it is, will be less than the Lagrange remainder.

Creative Commons License
This work by Thomas S. Downey is licensed under a Creative Commons Attribution 3.0 License.

Prev Home Next